Article ID Journal Published Year Pages File Type
1447776 Acta Materialia 2010 7 Pages PDF
Abstract

Nanoscale incipient plastic deformation in crystalline metals occurs as the result of the collective motion of dislocations. It is known as “nanoplasticity” and is recognized as the elementary process of the macroscopic deformation. Abrupt increases in indent displacements called displacement bursts were observed in recent nanoindentation experiments; that is, the specific behavior for nanoplasticity. In the present study, experimental tests are first conducted to educe the unique nature of the nanoscale deformation. Subsequently, large-scale atomistic simulations are performed to predict the incipient plastic deformation and a new discrete dislocation model combined with the boundary element analysis is constructed to capture the collective motion of the dislocations. Our results suggest that the incipient plastic deformation requires much higher critical shear stress than the theoretical shear strength due to high compressive stress distribution beneath the indenter, and that the displacement burst is induced by surface rearrangement corresponding to hundreds of dislocation dipoles.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,