Article ID Journal Published Year Pages File Type
1447889 Acta Materialia 2010 9 Pages PDF
Abstract

The wetting behavior of molten pure Mg droplets on pure Ti substrate, a crucial phenomenon in the design of Mg matrix composites reinforced with Ti particles, was investigated by the sessile drop method. The contact angle was measured in high-purity argon (99.999%) at 1073 K. In particular, the effects of two important parameters on the contact angle were evaluated: Mg evaporation during the wetting test; and surface oxide film of the substrate. The calculation method to estimate the modified contact angle involved taking the morphological changes of the droplet outline due to the evaporation into consideration. By changing the thickness of the surface oxide films on the Ti substrate, it was possible to examine the wettability and the chemical reactions at the interface between the solidified Mg drop and the substrate were investigated by scanning electron microscopy–energy dispersive X-ray spectrometry analysis. At the initial wetting stage, a large contact angle with 95–110° was obtained, which depended on the reduction of TiO2 surface films by Mg droplets. When the molten Mg contacts an area of pure Ti after reduction, the contact angle suddenly decreased. The equilibrium value at the stable state strongly depended on the surface roughness of the Ti plate.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,