Article ID Journal Published Year Pages File Type
1447978 Acta Materialia 2010 9 Pages PDF
Abstract

Elastic strain has been investigated by transmission electron microscopy in nanometric InAs layers grown on Ga0.47In0.53As/InP(0 0 1) by molecular beam epitaxy using a residual Sb flux. Deposits of 10 and 15 monolayers of InAs (3 and 4.5 nm) remain elastically stressed with a two-dimensional growth mode. The out-of-plane strain in the layers is analyzed by cross-sectional high-resolution electron microscopy. A distortion of the substrate below and on top of the InAs layers is detected and is attributed to a significant surface relaxation effect due to thinning. Surface relaxation is modeled by three-dimensional finite element modeling. An additional relaxation effect is obtained when the sample is not infinite along the direction perpendicular to the thinning. This effect enhances the buffer distortion of the buffers below and on top of the strained layers. Taking into account thin foil effects, the experimental out-of-plane strain is in excellent agreement with the theoretical value calculated for a pure InAs layer (i.e. 0.035), demonstrating the high level of strain and stress in the layers.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,