Article ID Journal Published Year Pages File Type
1448004 Acta Materialia 2010 15 Pages PDF
Abstract

Single crystals of γ  -TiAl cannot be grown in the near-stoichiometric compositions that are present inside two-phase γ/α2γ/α2-microstructures with attractive mechanical properties. Therefore, the single-crystal constitutive behavior of γ  -TiAl was studied by nanoindentation experiments in single-phase regions of these γ/α2γ/α2-microstructures. The experiments were characterized by orientation microscopy and atomic force microscopy to quantify the orientation-dependent mechanical response during nanoindentation. Further, they were analyzed by a three-dimensional crystal plasticity finite element model that incorporated the deformation behavior of γ-TiAl. The spatially resolved activation of competing deformation mechanisms during indentation was used to assess their relative strengths. A convention was defined to unambiguously relate any indentation axis to a crystallographic orientation. Experiments and simulations were combined to study the orientation-dependent surface pile-up. The characteristic pile-up topographies were simulated throughout the unit triangle of γ-TiAl and represented graphically in the newly introduced inverse pole figure of pile-up patterns. Through this approach, easy activation of ordinary dislocation glide in stoichiometric γ-TiAl was confirmed independently from dislocation observation by transmission electron microscopy.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,