Article ID Journal Published Year Pages File Type
1448075 Acta Materialia 2009 8 Pages PDF
Abstract

The three-dimensional interfacial network of grain boundaries in polycrystalline nickel has been characterized using a combination of electron backscatter diffraction mapping and focused ion beam serial sectioning. These data have been used to determine the relative areas of different grain boundary types, categorized on the basis of lattice misorientation and grain boundary plane orientation. Using the geometries of the interfaces at triple lines, relative grain boundary energies have also been determined as a function of lattice misorientation and grain boundary plane orientation. Grain boundaries comprising (1 1 1) planes have, on average, lower energies than other boundaries. Asymmetric tilt grain boundaries with the Σ9 misorientation also have relatively low energies. The grain boundary energies and areas are inversely correlated.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,