Article ID Journal Published Year Pages File Type
1448118 Acta Materialia 2009 14 Pages PDF
Abstract

Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al2O3 preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al2O3 phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to −350 MPa. Load transfer, found by diffraction to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffraction measurements show variations in load transfer at two different positions within the composite.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,