Article ID Journal Published Year Pages File Type
1448129 Acta Materialia 2009 8 Pages PDF
Abstract

A phase-field micromagnetic microelastic model is employed to simulate domain microstructure evolution in magnetic shape memory alloys. The simulations reveal that coupled motions of martensite twin boundaries and magnetic domain walls depend not only on the external magnetic field but also on internal domain configurations. It is shown that a twin boundary can continue its motion under a decreasing magnetic field or even reverse motion direction without changing magnetic field. The domain microstructure-dependent driving forces for the coupled motions of martensite twin boundaries and magnetic domain walls are analyzed; these explain the complex domain processes and resultant peculiar magnetomechanical behavior of magnetic shape memory alloys.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
,