Article ID Journal Published Year Pages File Type
1448209 Acta Materialia 2009 12 Pages PDF
Abstract

The effects of a 2.0 at.% addition of Ta to a model Ni–10.0Al–8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The γ′(L12)-precipitate morphology that develops as a result of γ-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {0 0 1}-faceted cuboids and parallelepipeds aligned along the elastically soft 〈0 0 1〉-type directions. The phase compositions and the widths of the γ′-precipitate/γ-matrix heterophase interfaces evolve temporally as the Ni–Al–Cr–Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the γ′-precipitate phase, and suppresses the mobility of Ni in the γ-matrix sufficiently to cause an accumulation of Ni on the γ-matrix side of the γ′/γ interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni–Al–Cr–Ta alloy.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,