Article ID Journal Published Year Pages File Type
1448217 Acta Materialia 2010 12 Pages PDF
Abstract

In this paper, we determine dislocation core structures and Peierls stresses of wadsleyite, a high-pressure mineral present in the Earth mantle. We use a Peierls–Nabarro model combined with a finite-element method in which we introduce two-dimensional generalized stacking fault energies. Several potential slip planes of wadsleyite are considered. The results show that dislocations in this mineral can exhibit complex dislocation cores with linear or non-collinear dissociation and even three-dimensional dislocation cores. The calculation of the Peierls stresses gives information on the potential activity of slip systems governing the plasticity of wadsleyite. Our study confirms experimental observations that ½〈1 1 1〉{1 0 1} is the easiest slip system in this structure at high-pressure and that [1 0 0](0 1 0) is the second easiest. Both these easily slip systems have dislocations that dissociate into collinear partial dislocations. In contrast [0 1 0] dislocations with very large Burgers vector (11.2 Å) are stabilized by complex dissociations involving four partial dislocations.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,