Article ID Journal Published Year Pages File Type
1448241 Acta Materialia 2010 9 Pages PDF
Abstract

The presence of aluminum nitride in nanostructured aluminum metal matrix composites was studied by high resolution transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy analysis and electron microscopy simulations. Three types of aluminum nitride structures were identified; predominantly, one layer of N atoms occupies the tetrahedral interstitial positions in the Al lattice, the frequency of which varies as a function of spatial location. The second and third were in the form of hexagonal and possibly cubic aluminum nitride particles with particle sizes on the order of 15–20 nm. The results suggest that the aluminum nitride phase evolves from intermediate transitional structures that involve N atoms in the Al lattice. The aluminum nitride phases frequently contained O and Mg, which preferentially segregate in close proximity to the reinforcement particles. First-principle calculations were used to describe the influence of O and Mg on the adsorption of N.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,