Article ID Journal Published Year Pages File Type
1448413 Acta Materialia 2010 35 Pages PDF
Abstract

Atomic-level modeling of materials provides fundamental insights into phase stability, structure and properties of crystalline defects, and to physical mechanisms of many processes ranging from atomic diffusion to interface migration. This knowledge often serves as a guide for the development of mesoscopic and macroscopic continuum models, with input parameters provided by atomistic models. This paper gives an overview of the most recent developments in the area of atomistic modeling with emphasis on interfaces and their impact on microstructure and properties of materials. Modern computer simulation methodologies are discussed and illustrated by several applications related to thermodynamic, kinetic and mechanical properties of materials. Existing challenges and future research directions in this field are outlined.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,