Article ID Journal Published Year Pages File Type
1448599 Acta Materialia 2009 18 Pages PDF
Abstract

Thermoelectric magnetic convection (TEMC) at the scale of both the sample (L = 3 mm) and the cell/dendrite (L = 100 μm) was numerically and experimentally examined during the directional solidification of Al–Cu alloy under an axial magnetic field (B⩽1TB⩽1T). Numerical results show that TEMC on the sample scale increases to a maximum when B is of the order of 0.1 T, and then decreases as B increases further. However, at the cellular/dendritic scale, TEMC continues to increase with increasing magnetic field intensity up to a field of 1 T. Experimental results show that application of the magnetic field caused changes in the macroscopic interface shape and the cellular/dendritic morphology (i.e. formation of a protruding interface, decrease in the cellular spacing, and a cellular–dendritic transition). Changes in the macroscopic interface shape and the cellular/dendritic morphology under the magnetic field are in good agreement with the computed velocities of TEMC at the scales of the macroscopic interface and cell/dendrite, respectively. This means that changes in the interface shape and the cellular morphology under a lower magnetic field should be attributed respectively to TEMC on the sample scale and the cell/dendrite scale. Further, by investigating the effect of TEMC on the cellular morphology, it has been proved experimentally that the convection will reduce the cellular spacing and cause a cellular–dendritic transition.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,