Article ID Journal Published Year Pages File Type
1448620 Acta Materialia 2010 11 Pages PDF
Abstract

Differential dilatometry has been employed to study the kinetics of the massive ferrite (α) → austenite (γ) transformation upon isochronal heating (i.e. austenitization) of the substitutional Fe–2.96 at.% Ni alloy subjected to a range of applied constant uniaxial compressive stresses. A phase-transformation model, involving site saturation, interface-controlled (continuous) growth and incorporating an impingement correction for an intermediate of the cases of ideally periodically and of ideally randomly dispersed growing particles, has been employed to extract the interface-migration velocity of the α/γ interface and the transformation-induced deformation energy taken up by the specimen. The value obtained for the energy corresponding with the elastic and plastic deformation associated with the accommodation of the α/γ volume misfit depends on the austenite fraction and increases distinctly with an increase in the applied uniaxial compressive stress, which is compensated by, in particular, an increase in the chemical driving force corresponding to an increase in the onset temperature. The opposite effects of an applied uniaxial compressive stress on the α → γ transformation and on the γ → α transformation can be discussed as the outcome of constrained plastic deformation due to transformation-induced strain.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,