Article ID Journal Published Year Pages File Type
1448801 Acta Materialia 2009 10 Pages PDF
Abstract

Dissolution kinetics of γ′ particles in binary Ni–Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ′ particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ′ particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,