Article ID Journal Published Year Pages File Type
1448838 Acta Materialia 2008 12 Pages PDF
Abstract

The temperature memory effect exhibited by Cu–Al–Ni shape memory alloys was studied by means of adiabatic calorimetry and microscopic observations. The harmonic, anharmonic and electronic contributions to the lattice specific heat were estimated by using the experimental data of the metallic components. The obtained results provide an accurate baseline for the quantitative study of the martensitic phase transformations as a function of the thermal history in these alloys. The specific heat of a Cu–Al–Ni sample was measured from 140 to 350 K throughout the phase transition region, and the temperature memory effect was carefully studied. These results are in good agreement with the optical observations as a function of temperature. The global behaviour of the martensitic transformation as regards the temperature memory effect is discussed and interpreted in terms of the microscopic mechanisms of nucleation and motion of the martensite plates.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,