Article ID Journal Published Year Pages File Type
1449034 Acta Materialia 2009 10 Pages PDF
Abstract

For crystalline metals, the structural carriers (dislocations and twins) of plasticity have been well characterized. In contrast, the structural processes responsible for the localized shear flow in amorphous metals remain poorly understood. Using molecular dynamics simulations, we illustrate here how the shear localization initiates in a Cu–Zr metallic glass. We identify the breakdown of full icosahedral clusters as a structural signature of the initiation of shear localization, which is demonstrated to be a spontaneous and autocatalytic instability propagating with a velocity close to the speed of sound. Structural disorder induced softening precedes thermal softening as the origin of the shear banding. Once the deformation band penetrates across the entire sample, the already-rejuvenated structure inside allows the entire band to collectively slip as a whole, to grow the shear offsets on both sides of the sample.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,