Article ID Journal Published Year Pages File Type
1449075 Acta Materialia 2008 10 Pages PDF
Abstract

Ni–Fe–Ga–Co is a promising system for magnetic shape memory alloy applications, due to its good ductility, mobile twin boundaries and high transformation temperatures. Unlike previous studies which focused on compositions with a Ga content of 27 at.%, here the martensitic transformation and magnetic properties over a large composition range of Ni54−xFe20Ga26Cox, Ni54−xFe19Ga27Cox, Ni56−xFe17Ga27Cox and Ni54−xFe18Ga28Cox (x = 0, 2, 4) are investigated. The martensitic transformation temperature Tm and the Curie temperature Tc can be tailored in a wide range by changing composition and heat treatment. A coupling of martensitic and magnetic transformations at ∼90 °C is found for Ni52Fe17Ga27Co4. Additionally, the effect of thermal cycling on the martensitic transformation of single- and two-phase Ni–Fe–Ga–Co alloys is discussed. Furthermore, an intermediate face-centered cubic phase induced by powderization and transformed into a body-centered cubic phase by aging is reported. The saturation magnetization is significantly decreased by powderization, while recovered by the subsequent aging.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,