Article ID Journal Published Year Pages File Type
1449080 Acta Materialia 2008 9 Pages PDF
Abstract

The point defect structure of cementite (Fe3C) is investigated using a combination of the statistical mechanical Wagner–Schottky model and first-principles calculations within the generalized gradient approximation. Large 128-atom supercells are employed to obtain fully converged point defect formation energies. The present study unambiguously shows that carbon vacancies and octahedral carbon interstitials are the structural defects in C-depleted and C-rich cementite, respectively. The dominant thermal defects in C-depleted and stoichiometric cementite are found to be carbon Frenkel pairs. In C-rich cementite, however, the primary thermal excitations are strongly temperature-dependent: interbranch, Schottky and Frenkel defects dominate successively with increasing temperature. Using the nudged elastic band technique, the migration barriers of major point defects in cementite are also determined and compared with available experiments in the literature.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,