Article ID Journal Published Year Pages File Type
1449145 Acta Materialia 2009 16 Pages PDF
Abstract

The motivation of the study is the development of a coupled approach able to account for the interaction between environment and plasticity in a polycrystalline material. The paper recalls first the constitutive equations used to describe the behavior of the grain core and of the grain boundary (GB). The procedure that is applied to generate synthetic polycrystalline aggregates with an explicit representation of the grain boundary area by 2D or 3D finite elements is then described. The approach is applied to the modeling of iodine-assisted stress corrosion cracking (IASCC) in Zircaloy tubes used in nuclear power plants.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,