Article ID Journal Published Year Pages File Type
1449394 Acta Materialia 2009 8 Pages PDF
Abstract

Half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby (x = 0, 0.25, 0.4, 0.5; y = 0.02, 0.04, 0.06) have been prepared by levitation melting followed by spark plasma sintering or hot pressing. X-ray diffraction analysis and scanning electron microscopy observation show that single-phased half-Heusler compounds without compositional segregations have been obtained by levitation melting in a time-efficient manner. A small amount of Sb doping can improve the electrical power factor but undesirably increases the thermal conductivity due to the increased carrier thermal conductivity. The isoelectronic substitution of Zr for Hf substantially decreased the lattice thermal conductivity. A state-of-the-art ZT value of 1.0 has been attained at 1000 K for the levitation-melted and spark-plasma-sintered Hf0.6Zr0.4NiSn0.98Sb0.02, which is one of the highest achieved ZT values for half-Heusler thermoelectric alloys.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,