Article ID Journal Published Year Pages File Type
1449402 Acta Materialia 2009 11 Pages PDF
Abstract

A three-dimensional Monte-Carlo (Potts) model was modified to incorporate the effect of grain-boundary inclination on boundary mobility. For this purpose, a straightforward geometric construction was developed to determine the local orientation of the grain-boundary plane. The combined effects of grain-boundary plane and misorientation on the effective grain-boundary mobility were incorporated into the Monte-Carlo code using the definition of the tilt–twist component. The modified code was validated by simulating grain growth in microstructures comprising equiaxed or elongated grains as well as the static recrystallization of a microstructure of deformed (elongated) grains.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,