Article ID Journal Published Year Pages File Type
1449598 Acta Materialia 2009 8 Pages PDF
Abstract

The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 °C. The internal stresses are not significantly different from zero >575 °C and increase nearly linearly <525 °C. At room temperature, the c axis of an average grain is under ∼200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,