Article ID Journal Published Year Pages File Type
1449942 Acta Materialia 2011 13 Pages PDF
Abstract

An ultrahigh-carbon steel was heat-treated to form an in situ composite consisting of a fine-grained ferritic matrix with 34 vol.% submicron spheroidized cementite particles. Volume-averaged lattice elastic strains for various crystallographic planes of the α-Fe and Fe3C phases were measured by synchrotron X-ray diffraction for a range of uniaxial tensile stresses up to 1 GPa. In the elastic range of steel deformation, no load transfer occurs between matrix and particles because both phases have nearly equivalent elastic properties. In the steel plastic range after Lüders band propagation, marked load transfer takes place from the ductile α-Fe matrix to the elastic Fe3C particles. Reasonable agreement is achieved between phase lattice strains as experimentally measured and as computed using finite-element modeling.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,