Article ID Journal Published Year Pages File Type
1450104 Acta Materialia 2007 10 Pages PDF
Abstract

Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn–20Cu–5Ni–2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn–Cu–Ni–Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn–Cu–Ni–Fe high damping alloy.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,