Article ID Journal Published Year Pages File Type
1450183 Acta Materialia 2008 11 Pages PDF
Abstract

A borosilicate glass matrix composite containing alumina platelets was considered to investigate toughening mechanisms and crack tip behavior in dispersion reinforced brittle matrix composites. Fracture toughness was determined by applying the chevron notched specimen technique, and fractographic analysis was employed to reveal the active toughening mechanisms with increasing content of reinforcement. A roughness-induced shielding effect has been quantified to prove the relation between fracture toughness and fracture surface roughness. Theoretical calculations of the fracture toughness enhancement based on a modified crack deflection model developed by Faber and Evans, combined with the influence of the increase in Young’s modulus, were found to be in good agreement with experimental data. An effect of residual stresses upon toughening of the investigated composite is discussed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,