Article ID Journal Published Year Pages File Type
1450189 Acta Materialia 2006 10 Pages PDF
Abstract

We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,