Article ID Journal Published Year Pages File Type
1450442 Acta Materialia 2006 8 Pages PDF
Abstract

The evaluation of residual elastic strain within the bulk of engineering components or natural objects is a challenging task, since in general it requires mapping a six-component tensor quantity in three dimensions. A further challenge concerns the interpretation of finite resolution data in a way that is commensurate and non-contradictory with respect to continuum deformation models. A practical solution for this problem, if it is ever to be found, must include efficient measurement interpretation and data reduction techniques. We describe the principle of strain tomography by high-energy X-ray diffraction, i.e. reconstruction of the higher dimensional distribution of strain within an object from multiple scans in lower dimensions, and illustrate the application of this principle to a simple case of reconstruction of an axisymmetric residual strain state induced in a cylindrical sample by quenching. The underlying principle of the analysis method presented in this paper allows generalisation to more complex situations.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,