Article ID Journal Published Year Pages File Type
145094 Advanced Powder Technology 2007 7 Pages PDF
Abstract

-The role of single-particle properties on the (macroscopic) charge distribution characteristics in particulate packing is not yet well understood, in spite of their extensive industrial relevance. In this paper, using computer simulations, we probe the influence of packing structure and size of the constituting particles on the charge distribution characteristics in semiconducting deterministic particulate packing. The simulations are based on the coupled particle finite element method approach (three-dimensional). We show that ordered particulate structures transfer charge more efficiently across the bed than for amorphous packing. For a given packing structure (face-centered cubic), the measure of charge transfer across the bed per unit area increases with decreasing particle size. The overall conductivity of the bed is proportional to the bead conductivity used in the packing. The ramping time for full potential across the packing is attained in just about 1 ms. The results show that the variations in the structural packing arrangement and size of the particles strongly influence the charge distribution (hopping) characteristics in particulate assemblies.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)