Article ID Journal Published Year Pages File Type
1451036 Acta Materialia 2005 15 Pages PDF
Abstract

A new analytical method to estimate the evolution of the relative volume fraction of precipitates during artificial aging of pre-aged AlMgSi(Cu) alloys in the underaged regime is introduced. The analytical results demonstrate that the precipitation processes in AlMgSi(Cu) alloys are isokinetic in commercially relevant temperature ranges. The theory of transformations is used to model isothermal and non-isothermal aging kinetics in isokinetic systems where the precipitate nuclei pre-exist at the start of aging and definite precipitate contents are reached at the end of transformation. A simple physically based model is also developed for the prediction of the average size of precipitates during artificial aging of pre-aged alloys, when “growth” is the controlling mechanism of precipitation. The microstructural models are combined with a previously developed yield strength model and the evolution of yield strengths during isothermal and non-isothermal aging of AlMgSi(Cu) alloys, with various pre-aging histories, are modeled. The analytical method and the microstructural and yield strength models are validated using experimental results.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,