Article ID Journal Published Year Pages File Type
1451038 Acta Materialia 2005 16 Pages PDF
Abstract

The toucan beak, which comprises one third of the length of the bird and yet only about 1/20th of its mass, has outstanding stiffness. The structure of a Toco toucan (Ramphastos toco) beak was found to be a sandwich composite with an exterior of keratin and a fibrous network of closed cells made of calcium-rich proteins. The keratin layer is comprised of superposed hexagonal scales (50 μm diameter and 1 μm thickness) glued together. Its tensile strength is about 50 MPa and Young’s modulus is 1.4 GPa. Micro and nanoindentation hardness measurements corroborate these values. The keratin shell exhibits a strain-rate sensitivity with a transition from slippage of the scales due to release of the organic glue, at a low strain rate (5 × 10−5/s) to fracture of the scales at a higher strain rate (1.5 × 10−3/s). The closed-cell foam is comprised of fibers having a Young’s modulus twice as high as the keratin shells due to their higher calcium content. The compressive response of the foam was modeled by the Gibson–Ashby constitutive equations for open and closed-cell foam. There is a synergistic effect between foam and shell evidenced by experiments and analysis establishing the separate responses of shell, foam, and foam + shell. The stability analysis developed by Karam and Gibson, assuming an idealized circular cross section, was applied to the beak. It shows that the foam stabilizes the deformation of the beak by providing an elastic foundation which increases its Brazier and buckling load under flexure loading.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,