Article ID Journal Published Year Pages File Type
1451228 Acta Materialia 2005 15 Pages PDF
Abstract

Plastic yielding at or near the crack tip can significantly influence the behaviour of cracks, and accordingly should be included in simulations of crack growth; however, this can introduce a number of computational challenges. In this study, a finite-element model, for simulating mixed-mode crack propagation in linear elastic materials, was modified to incorporate yielding. A routine for automatic crack extension and re-meshing enabled simulation of incremental crack propagation. Particular issues, including calculation of fracture parameters, crack propagation direction under mixed-mode loading and retention of plastic strain history, are addressed. Crack propagation was simulated in homogeneous and layered Cu/W composites, employing thermal and mechanical properties previously obtained from experiments. Two effects of plasticity on crack-tip stresses are predicted: (i) compliance mismatch leads to stress intensity factor amplification or ‘anti-shielding’, and (ii) accumulation of plastic strains leads to increases in effective toughness. Competition between these determines the structural reliability of the interface region.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,