Article ID Journal Published Year Pages File Type
1454673 Cement and Concrete Composites 2014 11 Pages PDF
Abstract

The interfacial bond strength of long high-strength steel fibers embedded in ultra-high-performance concrete (UHPC) reinforced with short steel microfibers was investigated by conducting single-fiber pullout tests. In particular, the influence of the addition of a shrinkage-reducing to a UHPC matrix on the pullout resistance of high-strength steel fibers was investigated. The addition of a shrinkage-reducing agent produced a noticeable reduction in the fiber pullout resistance owing to the lower matrix shrinkage, although the reduction of pullout resistance differed according to the type of fiber. Long smooth and twisted steel fibers were highly sensitive to the addition of the shrinkage-reducing agent whereas hooked fibers were not. Among the various high-strength steel fibers tested, twisted steel macrofibers showed the highest interfacial bond resistance, although twisted fibers embedded in UHPC showed slip softening pullout behavior rather than the typical slip hardening behavior observed in mortar.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,