Article ID Journal Published Year Pages File Type
1455169 Cement and Concrete Composites 2010 6 Pages PDF
Abstract

While high volume fly ash (HVFA) concretes can be designed and produced to meet 28-d strength requirements and often even exceed the durability performance of conventional concretes, a persistent problem is the potentially long delay in setting time that produces concurrently long delays in finishing the concrete in the field. Previous isothermal calorimetry studies on two different powder additions, namely calcium hydroxide and a rapid set cement, have shown that these powders can mitigate excessive retardation of the hydration reactions. In this paper, rheological measurements and conventional Vicat setting time studies are conducted to verify that these powder additions do indeed reduce setting times in paste systems based on both ASTM Class C and ASTM Class F fly ashes. The reductions depend on the class of fly ash and suggest that trial mixtures would be a necessity to apply these technologies to each specific fly ash/cement/admixture combination being employed in the field. Potentially, for such screening studies, the rheological measurement of yield stress may provide a faster indication of setting (and finishability) than conventional Vicat needle penetration measurements on pastes.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,