Article ID Journal Published Year Pages File Type
1455910 Cement and Concrete Composites 2006 13 Pages PDF
Abstract

Numerical procedures are proposed to predict the failure of reinforced concrete (RC) beams strengthened in flexure with fiber-reinforced polymeric (FRP) laminates. The framework of damage mechanics was used during the modeling. Numerical results were validated against experimental data obtained from 19 beams strengthened with different types of FRP. These beams failed by concrete crushing, cover failure and plate debonding. The numerical models were capable of predicting the experimentally observed load–deflection, failure load and failure modes. The sensitivity of the numerical results was studied. In particular, the effect of the concrete constitutive behavior and different modeling considerations was evaluated. It was found that the fracture energy of the concrete–repair interface plays a central part in predicting plate-debonding failures.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,