Article ID Journal Published Year Pages File Type
1455916 Cement and Concrete Research 2016 10 Pages PDF
Abstract

The computational power allows nowadays the development of mesoscopic models of concrete, based on finite element or lattices approaches, which represent the contribution of inclusions to the behavior of concrete. However, the smallest heterogeneities are often removed to these simulations for decreasing the computation time. In this paper, the effect of aggregate classes on the fracture behavior of a plain concrete is studied. Different simulations are performed from a mesoscopic model based on a diffuse meshing technique and Fichant's damage model, in which the smallest aggregates are successively removed from the granular skeleton to the benefit of a homogenized continuous mortar. The effects of these simplifications are then evaluated by comparing the fracture behaviors obtained to the one of the reference concrete. The results show the relevance of modeling all classes of aggregates in order to obtain an accurate description of the failure behavior of concrete.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,