Article ID Journal Published Year Pages File Type
1456420 Cement and Concrete Research 2013 8 Pages PDF
Abstract

Roman cements were key materials used in the architecture of the nineteenth and early twentieth centuries. Fine cracks, caused by restrained shrinkage during drying, are a distinct characteristic of all Roman cement stuccoes. Today, cracking has become an important barrier preventing broader acceptance of Roman cement as a material by the restoration and construction sector. Drying shrinkage and tensile properties of Roman cement pastes and mortars submitted to various curing and drying regimes were determined as key parameters controlling cracking. A higher volume of aggregate in the mortar mix and a moderate curing time produce optimum Roman cement mortars from the standpoint of reducing the risk of cracking. Fast drying produced significant microcracking due to moisture gradients and differential shrinkage across the specimens. Stress relaxation observed during the long-time loading of the materials reduced their vulnerability to cracking.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,