Article ID Journal Published Year Pages File Type
1457532 Cement and Concrete Research 2008 11 Pages PDF
Abstract

Previous experimental research has shown that the compactive strains in concrete subjected to a load-then-heat regime exceed those measured in heat-then-load tests under compression. This excess in strain is known as transient thermal creep or load-induced thermal strain (LITS). All previous experimental research on LITS in mature concrete has been conducted in unsealed conditions, mainly under uniaxial compression (with a few biaxial compression tests, but no multiaxial tests) on specimens subjected to monotonic heating to high temperatures (> 500 °C). This paper presents the findings from a novel laboratory investigation of LITS under uniaxial, biaxial and hydrostatic compression in partially sealed conditions, at transient temperatures of up to 250 °C. The results from 49 experiments show that LITS in the sub-250 °C range is highly dependent on the moisture flux conditions and, consequently, on the relationship between heating and drying rates.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,