Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1458053 | Cement and Concrete Research | 2005 | 10 Pages |
To realise self-compacting concrete, high filler contents are often used, and in order to avoid problems with excessive heat development during hardening, inert filler materials can be used. In this research two different filler types, limestone and quartzite, are considered in combination with different Portland cements. Although the filler material has often been considered to be inert, experimental results show that it does influence the hydration processes. On the one hand the reaction rate is influenced due to a modified nucleation possibility, and on the other hand, in some cases, the reaction mechanisms are altered, with a new hydration peak occurring. Based on isothermal conduction calorimetry on different cement-filler systems, an existing hydration model for blended cement is modified for these systems. Within the degree of hydration based hydration model, the cement/powder ratio seems to be an important parameter for the cement-filler systems. The model accurately predicts the heat of hydration during the hardening process.