Article ID Journal Published Year Pages File Type
1458166 Cement and Concrete Research 2006 8 Pages PDF
Abstract
The uptake of selenate (SeVIO42−) or selenite (SeIVO32−) by hardened cement paste (HCP) and important constituents of the cement matrix such as calcium silicate hydrate (C-S-H), portlandite (CH), ettringite (AFt) and monosulfate (AFm) was investigated using X-ray absorption spectroscopy (XAS). The XAS measurements were conducted on samples with Se loadings ranging between 1200 and 8800 ppm. X-ray absorption near edge structure (XANES) spectroscopy shows that redox reactions do not influence uptake processes in the cementitious systems. The EXAFS (extended X-ray absorption fine structure) spectra of Se(IV) and Se(VI) bound to CH, AFt, AFm and C-S-H are similar to those of SeO42− and SeO32− in solution, indicating a “solution-like” coordination environment upon uptake by the cement minerals. Similarly, the spectra of Se(IV)- and Se(VI)-treated HCP samples reveal the absence of backscattering atoms at short distances. These results suggest that the coordination sphere of the SeO42− and SeO32− entities is maintained upon immobilization by HCP and cement minerals and non-specific interactions dominate at the given Se loadings.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,