Article ID Journal Published Year Pages File Type
1458549 Ceramics International 2016 8 Pages PDF
Abstract

A series of Eu3+- or Dy3+-doped and Eu3+/Dy3+ co-doped Y2WO6 in pure phase was synthesized via high-temperature solid-state reaction. X-ray diffraction, diffuse reflection spectra, photoluminescence excitation and emission spectra, the CIE chromaticity coordinates and temperature-dependent emission spectra were exploited to investigate the phosphors. Upon UV excitation at 310 nm, efficient energy transfer from the host Y2WO6 to dopant ions in Eu3+ or Dy3+ single-doped samples was demonstrated and those phosphors were suitable for the UV LED excitation. The intense red emission was observed in Y2WO6: Eu3+, and blue and yellow ones were observed in Y2WO6: Dy3+. Concentration quenching in Y2WO6: Dy3+ phosphors could be attributed to the electric dipole-dipole interaction. In Eu3+/Dy3+ co-doped Y2WO6 phosphors energy transfer process only took place from the host to Eu3+/Dy3+ ions and warm white-light emission can be obtained by adjusting the dopant concentrations. The temperature-dependent luminescence indicated Eu3+/Dy3+ co-doped Y2WO6 was thermally stable. Our overall results suggested that Y2WO6: Ln3+ (Ln3+=Eu3+, Dy3+) as warm white-light emitting host-sensitized phosphor might be potentially applied in WLEDs.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,