Article ID Journal Published Year Pages File Type
1458577 Ceramics International 2016 12 Pages PDF
Abstract

Electric power generation characteristics of lead zirconate titanate (PZT) piezoelectric ceramic have been investigated experimentally and numerically. A thin PZT ceramic plate attached to a thin brass plate was used to examine the electric voltage generated during cyclic loading. On increasing the number of PZT ceramic plates combined together in the longitudinal direction, the electric voltage increases with the highest electric voltage being obtained for four PZT ceramic plates; and the maximum electric voltage becomes almost constant even if the number of PZT ceramic plates combined together increases more than four. This is attributed to the low strain level and the mixed strain (compressive and tensile strain). The effect of strain characteristic on the electric voltage value was analyzed numerically using our strain definition, and a clear correlation between the extent of compressive strain and generated electric voltage is clarified. A different electric generation characteristic was further observed depending on the stress conditions: generation of positive and negative electric voltage occurs when the PZT ceramic is subjected to mainly compressive and tensile stress, respectively.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,