Article ID Journal Published Year Pages File Type
1458772 Ceramics International 2016 8 Pages PDF
Abstract

Er3+/Yb3+ co-doped bioactive glasses were prepared via containerless processing in an aerodynamic levitation furnace. The as-prepared glasses were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive X-Ray spectroscopy (EDX). The up-conversion luminescence of as-prepared glasses was measured using an Omni- 3007 spectrometer. Furthermore, the in vitro bioactivity was evaluated by soaking the materials in simulated body fluid, and the biocompatibility was evaluated in MC3T3-E1 cell culture.The results show that containerless processing is a unique method to prepare homogeneous rare earth doped bioactive glasses. The obtained Er3+/Yb3+ co-doped glasses show green and red up-conversion luminescence at the excitation of 980 nm laser. The XRD analysis confirmed that calcium silicate powders, as starting materials, were completely transformed from the original multi-crystalline phase (CS-P) into the amorphous-glassy phase (CS-G, EYS, LCS) via containerless processing. The SEM observation combined with EDX and FTIR analyses showed that the as-prepared glasses were bioactive. The cell proliferation assay also revealed that the as-prepared glasses were biocompatible and nontoxic to MC3T3-E1 cells. This study suggests that the luminescent bioactive glasses prepared by containerless processing could be used for studying biodegradation of bone implantation materials.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,