Article ID Journal Published Year Pages File Type
1458846 Ceramics International 2016 10 Pages PDF
Abstract

In this study, a novel bi-layered nanostructured silica (SiO2)/ silver-doped fluorohydroxyapatite (Ag-FHAp) coating was deposited on biodegradable Mg-1.2Ca-4.5Zn alloy via physical vapor deposition (PVD) combined with electrodeposition (ED). The nano-SiO2 underlayer had a compact columnar microstructure with thickness of around 1 µm while the Ag-FHAp overlayer presented large plate-like crystals accompanied with small rounded particles with thickness about 10 µm. Potentiodynamic polarization test exhibited that the double layer SiO2/Ag-FHAp coated Mg alloy has superior corrosion resistance compared to uncoated and single layer SiO2 coated samples. Contact angle measurement showed that Ag-FHAp coating over nano-SiO2 layers significantly increased surface wettability which is favorable for the attachment of cells. Cytotoxicity tests indicated that the nanostructured SiO2/Ag-FHAp coating enabled higher cell viability compared to nano-SiO2 coating and uncoated samples. In addition, bi-layer and single-layer coatings considerably improved the ability of cell attachment than that of the uncoated samples. The cell viability of coated and uncoated samples increased with increasing incubation time. The double layer SiO2/Ag-FHAp coated biodegradable Mg alloy possessed high corrosion resistance and cytocompatibility and can be considered as a promising material for implant applications.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,