Article ID Journal Published Year Pages File Type
1458855 Ceramics International 2016 17 Pages PDF
Abstract

Pd-doped anatase TiO2 nanoparticles were synthesized by a modified sol–gel deposition technique. The synthetic strategy is applicable to other transition and post-transition metals to obtain phase-pure anatase titania nanoparticles. This is important in the sense that anatase titania forms the most hydroxyl radicals (compared to other polymorphs like rutile, brookite, etc.) for better photocatalytic performance. XRD and Raman data confirm the phase-pure anatase formation. Doping of Pd2+ into Ti4+ sites (for substitutional doping) or interstitial sites (for interstitial doping) creates strain within the nanoparticles and is reflected in the XRD peak broadening and Raman peak shifts. This is because of the ionic radii difference between Ti4+(∼68 pm) and Pd2+(∼86 pm). XPS data confirm the formation of high surface titanol groups at the nanoparticle surface and a large number of loosely bound Ti3+–O bonds, both of which considerably enhance the photocatalytic activity of the doped nanoparticles. A comparative study with other metal doping (Ga) shows that TiO2: Pd nanoparticles have more Ti3+–O bonds, which enhance the charge transfer rate and hence improve the photocatalytic activity compared to other transition and post-transition metal-doped titania nanostructures.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,