Article ID Journal Published Year Pages File Type
1459040 Ceramics International 2016 7 Pages PDF
Abstract

Silicate-bonded porous SiC scaffolds with lamellar structures were prepared by freeze casting and liquid-phase sintering. It was found that the viscosity and solidification velocity of SiC water-based slurries with 30 vol% solid loading decreased with increasing Al2O3–MgO (AM) addition. As the AM content increased from 10 to 30 wt%, the lamellae of the sintered scaffolds became denser and the porosity decreased from 69±0.5% to 62±0.5%, while the compressive strength improved from 25±2 to 51±2 MPa. The dynamics of pressureless infiltration for an Al–12 Si–10 Mg alloy on the SiC porous scaffold was measured and the composites with lamellar-interpenetrated structures were successfully produced. Both the compressive strength and the elastic modulus of the composites increased with increasing AM content. The maximum strength reached 952±24 MPa and the highest elastic modulus about 156 GPa, respectively, in a longitudinal direction, increasing about 32% and 11% as compared with those of the composites without AM.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,