Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1459181 | Ceramics International | 2016 | 7 Pages |
A novel ternary photocatalyst AgBr/ZnO/RGO, where AgBr/ZnO is supported on reduced graphene oxide, is synthesized via a facile hydrothermal–impregnation method. The resultant composite presents a lamellar structure with AgBr nanoparticles homogeneously dispersing on the surface. The photocatalytic experiment for methyl orange dye degradation under visible light irradiation shows that ternary composite AgBr/ZnO/RGO has an activity 12.8 times and 2.3 times higher than binary photocatalysts ZnO/RGO and AgBr/ZnO respectively. More importantly, the ternary composite also demonstrates a good photostability. Metallic Ag is produced during the photocatalytic process, which may serve as the electron transfer mediator in the vectorial Z-scheme transfer of photogenerated charge carriers at the interface of AgBr/ZnO/RGO. The effective separation of photogenerated electrons and holes was proposed to be responsible for the enhancement of visible light photoactivity.