Article ID Journal Published Year Pages File Type
1459756 Ceramics International 2015 8 Pages PDF
Abstract

Fe (iron)-doped TiO2 nanorods were grown on fluorine doped tin oxide (FTO) substrates with various Fe doping concentrations using modified chemical bath deposition (M-CBD). We investigated the effects of Fe doping concentration on the morphological, structural, optical, and photoelectrochemical (PEC) properties of the TiO2 nanorods. From this study, it was found that the PEC properties were mainly dependent on the morphological and optical properties of the Fe-doped TiO2 nanorods. At low Fe doping concentration, the PEC properties were highly affected by the optical properties. On the other hand, the PEC properties were significantly affected by the morphological properties at high doping concentration. We observed a maximum photocurrent density of 0.48 mA/cm2 at a Fe doping concentration of 2 at% from this study. In addition, the donor density and flat-band potential of the Fe doping concentration from the Mott–Schottky plot were analyzed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,