Article ID Journal Published Year Pages File Type
1460217 Ceramics International 2015 10 Pages PDF
Abstract

Here the 1–3 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were designed. The dielectric, piezoelectric and electromechanical properties of the composites were studied. The results indicate that the composite with varied distribution of piezoelectric ceramic has large relative permittivity, piezoelectric strain constant and electromechanical coupling coefficient at the thickness vibration mode. The composites with varied distribution of matrix phase have larger piezoelectric voltage constant, smaller mechanical quality factor and acoustic impedance value than those with varied distribution of piezoelectric ceramic phase. The electromechanical coupling property of the composites at the planar vibration mode shows obvious dependence on matrix phase distribution. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with specific surface vibration amplitude.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,