Article ID Journal Published Year Pages File Type
1460239 Ceramics International 2015 9 Pages PDF
Abstract
Pure holmium oxide ceramic nanostructures were prepared via a new simple approach. Nanostructures were synthesized by heat treatment in air at 600 °C for 5 h, utilizing [Ho L(NO3)2]NO3 (L=bis-(2-hydroxy-1-naphthaldehyde)-butanediamine Schiff base ligand), as precursor, which was prepared via a solvent-free solid-solid reaction from different molar ratios of holmium nitrate and Schiff base ligand. The as-prepared nanostructures were characterized by field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. It was found that the calcination temperature and molar ratio of holmium nitrate and Schiff base ligand have significant and key effect on the morphology and particle size of the holmium oxide. To investigate the catalytic properties of as-obtained holmium oxide nanostructures, the photocatalytic degradation of rhodamine B as cationic dye under ultraviolet light irradiation was performed.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,