Article ID Journal Published Year Pages File Type
1460609 Ceramics International 2015 8 Pages PDF
Abstract

In this work, a series of Li2+xNa2−xTi6O14 (0≤x≤0.20) are synthesized by a simple solid-state reaction method. All the as-prepared samples are high purity titanates and well crystallized with a particle size distribution in the range of 0.3–0.5 μm. Electrochemical analysis shows that Li2.05Na1.95Ti6O14 displays a higher working potential platform at 1.33 V than that about 1.28 V of other Li2+xNa2−xTi6O14 (x=0.00, 0.10, 0.15 and 0.20) samples. Charge/discharge results show that Li2.05Na1.95Ti6O14 presents higher charge capacities of 302.9 mA h g−1 for the first cycle than other four samples. After 50 cycles, Li2.05Na1.95Ti6O14 still delivers a reversible charge capacity of 277.6 mA h g−1, but Li2+xNa2−xTi6O14 (x=0.00, 0.10, 0.15 and 0.20) samples only present the charge capacities of 211.8, 232.1, 183.9 and 231.9 mA h g−1, respectively. Furthermore, Li2.05Na1.95Ti6O14 also provides a remarkable rate performance with the charge capacities of 241.2 mA h g−1 at 200 mA g−1, 228.2 mA h g−1 at 300 mA g−1 and 217.4 mA h g−1 at 400 mA g−1. In contrast, pristine Li2Na2Ti6O14 only delivers the lithium storage capacities of 207.0 mA h g−1 at 200 mA g−1, 194.5 mA h g−1 at 300 mA g−1 and 187.7 mA h g−1 at 400 mA g−1. All these improved electrochemical properties of Li2.05Na1.95Ti6O14 are attributed to the lowest polarization and the highest lithium ion diffusion coefficient among all the five samples.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,